isomeric alcohols 3 and 4 by a large excess of RuO_2 hydrate at room temperature gave, of course, the corresponding aldehydes 5 and 6 with high stereospecificity.

The dehydrogenation of the other alcohols were further studied. Thus, prenol (7) was converted to senecioaldehyde (8) in a 76% yield by O_2/RuO_2 (Scheme II). Secondary allylic alcohols such as carveol (9) and β -ionol (10) were also selectively oxidized to carvone (11) (O_2/RuO_2 : 34% conversion, >95% selectivity) and β -ionone (12) (Ar/RuO₂: 98% conversion, 80% selectivity), respectively. However, the secondary alcohols were less reactive than the primary ones in the reaction system described here. This trend is also observed in the oxidations with MnO₂ and seems common to dehydrogenation of allylic alcohols by ruthenium irrespective of its valence state.⁹

Saturated alcohols were scarcely oxidized by RuO₂ or O₂/RuO₂. Activated alcohols such as α -keto alcohols and α -hydroxy lactones were dehydrogenated by using the present oxidation system, though they required the rigorous reaction conditions (>100 °C). Consequently, the reactivity order of the alcohols toward RuO₂ or O₂/RuO₂ was shown to be as follows: primary allylic alcohols > secondary allylic alcohols > α -keto alcohols and α -hydroxy lactones > saturated alcohols.

For the dehydrogenation of allylic alcohols, we used hydrated RuO₂. On the contrary, anhydrous RuO₂ was found to effect neither the stoichiometric nor catalytic oxidation of alcohols. Hydrated RuO₂ has been reported to be significantly different from the anhydrous form.¹⁰ The former is formulated as RuO_{2+x}·yH₂O [values of x up to 0.12 (chemisorbed oxygen) have been found whereby y is often 1 to 1.3] and possesses a large surface area (200 m²/g). On the other hand, anhydrous RuO₂ has little chemisorbed oxygen and a small surface area (4 m²/g). These differences might decisively affect the activity of RuO₂ in the oxidation of allylic alcohols.

Registry No. 1, 104-54-1; 2, 14371-10-9; 3, 106-24-1; 4, 106-25-2; 5, 141-27-5; 6, 106-26-3; 7, 556-82-1; 8, 107-86-8; 9, 99-48-9; 10, 472-80-0; 11, 99-49-0; 12, 79-77-6; 2,6-di-*tert*-butyl-*p*-cresol, 128-37-0.

Supplementary Material Available: Representative experimental procedures of 1 (1 page). Ordering information is given on any current masthead page.

(9) (a) Sasson, Y.; Blum, J. Tetrahedron Lett. 1971, 2167. (b) Sasson,
Y.; Rempel, G. L. Ibid. 1974, 4133; (c) Can. J. Chem. 1974, 52, 3825. (d)
Regan, S. L.; Whiteside, G. M. J. Org. Chem. 1972, 37, 1832. (e) Sharpless, K. B.; Akashi, K.; Oshima, K. Tetrahedron Lett. 1976, 2503. (f)
Tomioka, H.; Takai, K.; Oshima, K.; Nozaki, H. Ibid. 1981, 22, 1605. (g)
Matsumoto, M.; Ito, S. J. Chem. Soc., Chem. Commun. 1981, 907. (h)
Murahashi, S.; Ito, K.; Naota, T.; Maeda, Y. Tetrahedron Lett. 1981, 22, 5327. (i)
Murahashi, S.; Kondo, K.; Hakata, T. Ibid. 1982, 23, 229. (10)
Fletcher, J. M.; Gardner, W. E.; Greenfield, B. F.; Holdoway, M. J.; Rand, M. H. J. Chem. Soc. A 1968, 653.

Masakatsu Matsumoto,* Nobuko Watanabe Sagami Chemical Research Center Nishi-Ohnuma 4-4-1, Sagamihara

Nishi-Ohnuma 4-4-1, Sagaminara Kanagawa 229, Japan Received May 1, 1984

Synthesis of Tris-Annelated Benzenes Incorporating a Three-Membered Ring

Summary: Tris-annelated benzenes incorporating a three-membered ring can be prepared by dehydrohalogenation of the Diels-Alder adducts of 1,1'-bicycloalkenes and 1-bromo-2-chlorocyclopropene (7).

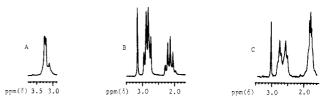
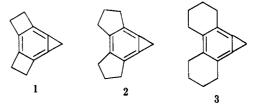
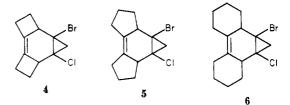
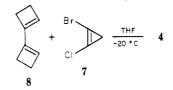




Figure 1. 90-MHz 1 H NMR spectra of 1 (A), 2 (B), and 3 (C) in CDCl₃.

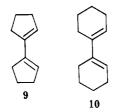

Sir: Although tricyclobutabenzene has been reported,² tris-annelated aromatics incorporating a three-membered ring are unknown.³ We report here the synthesis of dicyclobutacyclopropabenzene⁴ (1) and the homologues 2 and 3.

The synthesis of compounds 1-3 relies on the aromatization of the Diels-Alder adducts 4-6,

respectively, which can be prepared readily from 1bromo-2-chlorocyclopropene (7)⁵ and the appropriate diene. Thus cycloaddition of 1,1'-bicyclobutenyl (8)⁶ and 7

in tetrahydrofuran at -20 °C for 48 h yielded 4 in 19% yield. Gas chromatography suggests that 4 is predominantly one isomer.

Dehydrohalogenation of 4 using potassium tert-butoxide in tetrahydrofuran at 25 °C for 1.5 h yielded 1 in 53% yield. The hydrocarbon was concentrated in vacuo and purified by sublimination from the reaction flask at 10-m torr and 25 °C. A solution of 1 in CDCl₃ could be stored at -20 °C for several days without decomposition, but it decomposed after ~ 36 h at 25 °C. The cyclopropenyl protons of 1 resonate at δ 3.1 and the cyclobutenyl methylenes at $\delta \sim 3.15-3.4$ (Figure 1, spectrum A). The characteristic infrared band resulting from the combination of a three-membered ring skeletal vibration with the aromatic double bond stretch appears at 1664 cm⁻¹. The ultraviolet spectrum (pentane) has absorptions at λ_{max} 247 $(\epsilon 400)$, 268 (420), and 275 nm (400). It is interesting that the position of these absorption maxima are close to those reported [λ_{max} (hexane) 264, 270, 271.5 nm] for nonlinear


- (3) Halton, B.; Officer, D. L. Aust. J. Chem. 1983, 36, 1291.
- (4) Tetracyclo[7.2.0. $0^{2,4}$. $0^{5,8}$]undeca-1,4,8-triene.
- (5) Billups, W. E. et al. Tetrahedron Lett., submitted for publication.
- (6) Heinrich, F.; Luttke, W. Liebigs Ann. Chem. 1978, 1880.

⁽¹⁾ National Science Foundation Predoctoral Fellow, 1983-1986.

⁽²⁾ Nutakul, W.; Thummel, R. P.; Taggart, A. D. J. Am. Chem. Soc. 1979, 101, 770.

cyclobutacyclopropabenzene.⁸ In contrast, a sizeable bathochromic shift is observed for the linear isomer [λ_{max}] (cyclohexane) 284, 287.5, 294 nm]. Elemental analysis was provided by high-resolution mass spectrometry: calcd for $C_{11}H_{10} m/e 142.0783$, found m/e 142.0785.

The dienes 9 and 10, required for the synthesis of precursors 5 and 6, can be prepared from the simple two-step

pinacol approach described by Greidinger and Ginsberg.⁹ Dehydrohalogenation of 5 yielded 2 in 55% yield. The NMR spectrum is diplayed in Figure 1 (spectrum B). Other spectral properties are as follows: IR (CCl₄) 1651 cm⁻¹; UV (pentane) λ_{max} 270 (ϵ 920), and 279 nm (960); calcd for C₁₃H₁₄ m/e 170.1096, found m/e 170.1092.

Under similar conditions 6 yielded 3 in 83% yield; NMR (Figure 1, spectrum C); IR (CCl₄) 1660 cm⁻¹; UV (pentane) $\lambda_{\rm max}$ 273 (ϵ 908), 283 nm (915); calcd for C₁₅H₁₈ m/e 198.1408, found m/e 198.1406.

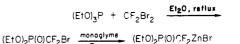
The results of studies on the chemical and physical properties of these cycloproparenes will be reported later.

Acknowledgment. We gratefully acknowledge The Robert A. Welch Foundation (Grant C-490) for support of this work.

Registry No. 1, 90968-12-0; 2, 90968-13-1; 3, 90968-14-2; 4, 90968-15-3; 5, 90968-16-4; 6, 90968-17-5; 7, 88180-95-4; 8, 69573-29-1; 9, 934-02-1; 10, 1128-65-0.

(7) Davalian, D.; Garratt, P. J.; Mansuri, M. M. J. Am. Chem. Soc. 1978. 100. 980.

(8) For a discussion of the electronic spectra of simple cycloproparenes, see: Halton, B. Ind. Eng. Chem. Prod. Res. Rev. 1980, 19, 349.


(9) Greidinger, D. S.; Ginsburg, D. J. Org. Chem. 1957, 22, 1406.

W. E. Billups,* Benny E. Arney, Jr.,¹ Long-Jin Lin Department of Chemistry, Rice University Houston, Texas 77251 Received February 17, 1984

A Safe Facile Synthesis of Difluorophosphonoacetic Acid

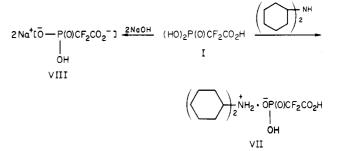
Summary: Copper(I) halide catalyzed acylation of [(diethoxyphosphinyl)difluoromethyl]zinc bromide with ethyl chloroformate provides a safe, easily scaled up preparation of ethyl difluoro(diethoxyphosphinyl)acetate from readily available precursors. Silvation of this ester, followed by hydrolysis, gives difluorophosphonoacetic acid.

Sir: Pronounced biological effects are often observed when hydrogen atoms in a biologically active molecule are replaced by fluorine.^{1,2} Recently, we,^{3,4} as well as others,⁵ Scheme I

III(95%)

CuBr/CIC(0)0E1 CIC(0)NE12 (EtO)2P(0)CF2CO2Et (EtO)_P(O)CF_C(O)NEt_

II(50%)


II + Me3SiBr ---- (Me3SiO)2P(0)CF2CO2Et

(Me3SiO)2P(0)CF2C(0)OSiMe3

Table I. Ionization Constants

	(HO) ₂ P(O)- CF ₂ CO ₂ H	(HO) ₂ P(O)- CH ₂ CO ₂ H ²²	(HO) ₂ P(O)- CF ₂ P(O)(OH) ₂ ⁴
pK_{a_1}	1.30 ± 0.10	2.0	1.46 ± 0.15
pK_{a_2}	1.95 ± 0.03	5.11 ± 0.04	2.14 ± 0.05
pK_{a_3}	6.16 ± 0.02	8.69 ± 0.05	5.78 ± 0.05
pK_{a_4}			8.16 ± 0.02

have been interested in fluorinated analogues of biologically important phosphonic acids. Thus, our attention was drawn to a comparison of the biological and chelation properties of phosphonoacetic acid⁶⁻⁸ and difluorophosphonoacetic acid (I). Unfortunately, the preparation of I has not been described; only a poorly characterized ester of I has been reported⁹ in low yield via the reaction of triethyl phosphite and tetrafluoroethylene oxide.¹⁰

We now report a safe, facile, easily scaled up preparation of ethyl difluoro(diethoxyphosphinyl)acetate (II) from readily available precursors (cf. Scheme I).

Diethyl (bromodifluoromethyl)phosphonate (III) is readily prepared from triethyl phosphite and dibromodifluoromethane.¹¹ Reaction of III with zinc dust gives the

(10) The ester was obtained in only 14% yield (impure). The major

product of this route is the toxic diethyl fluorophosphate [(EtO)₂P(O)F]. Also, tetrafluoroethylene oxide is an explosive reagent and should be handled with caution.

(11) Burton, D. J.; Flynn, R. M. J. Fluorine Chem. 1977, 10, 329.

0022-3263/84/1949-3437\$01.50/0 © 1984 American Chemical Society

^{(1) &}quot;Biomedicinal Aspects Of Fluorine Chemistry"; Filler, R., Koba-

<sup>yashi, Y., Eds.; Kodasha/Elsevier: New York, 1982.
(2) "Biochemistry Involving Carbon-Fluorine Bonds"; Filler, R., Ed.;
ACS Symposium Series No. 28, 1978.</sup>

⁽³⁾ Burton, D. J.; Pietrzyk, D. J.; Ishihara, T.; Fonong, T.; Flynn, R. M. J. Fluorine Chem. 1982, 20, 617.

⁽⁴⁾ Fonong, T.; Burton, D. J.; Pietrzyk, D. J. Anal. Chem. 1983, 55, 1089

⁽⁵⁾ Blackburn, G. M.; England, D. A.; Kolkmann, F. J. Chem. Soc., Chem. Commun. 1981, 930.

⁽⁶⁾ Phosphonoacetic acid has been shown to effectively inhibit the replication of Herpes virus⁷ and has been shown to suppress replication of DNA tumor viruses.8

⁽⁷⁾ Hay, J.; Brown, S. M.; Jamieson, A. T.; Rixon, F. J.; Moss, H.; Dargon, D. A.; Subak-Sharp, J. H. J. Antimicrob. Chemother. 1977, 3, Oda, H.; Mori, R.; Miyazono, J.; Iwasaha, T. Arch. Virol. 1979, 62,
 175. Overly, L. R.; Robishaw, E. E.; Schleacher, J. B.; Ructer, A.; Ship-

<sup>Kowitz, N. L.; Mao, J. Antimicrob. Agents Chemother. 1974, 6, 360.
(8) Allaudeen, H. S.; Bertino, J. R. Biochim. Biophys. Acta 1978, 520,
490. Elliot, R. M.; Bateson, A.; Kelly, D. C. J. Virol. 1980, 33, 539.
(9) Ginsburg, V. A.; Vasuk'eva, M. N. Zh. Obshch. Khim. 1967, 37,
2483 (English Translation, 2371).</sup>